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Quasistatic and dynamic stability of straight crack
propagation

M. Adda—Bedia
Paris

Recent experiments have shown that it is possible to control crack propagation at
very low speeds. This is done by means of internal diffusion fields which generate in
the material inhomogeneous stress fields. Two experiments of this kind will be taken
as an illustration. The first one concerns a crack travelling in a glass strip submitted
to a non-uniform thermal field. The second experiment concerns multi-crack propa-
gation induced by the drying of colloidal suspensions. Both of them show that cracks
undergo numerous instabilities that depend of the geometry of the experiment and of
the control parameters of the diffusion field. A theoretical analysis of the morpholog-
ical instability mechanisms of a single crack and multiple crack propagation will be
presented. However, daily crack propagation often occurs at very high velocities. A
still unsolved question concerns the onset of branching instability. In 1970, Eshelby
proposed a simple branching mechanism based on the fact that a crack branches in
order to decrease the breaking speed. In this second part, we will review this question
and compute exactly the branching velocity threshold and the branching angle in the
light of Eshelby’s hypothesis.
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Non-convex discrete systems and fracture
Andrea Braides
SISSA, via Beirut 4, 34013 Trieste, Italy Email: braides@sissa.it

The use of non-convex discrete energies to derive a continuum theory by using a
variational approach was recently considered by Truskinovsky [7] and by Braides,
Dal Maso and Garroni [12]. In both those papers the authors consider an array of
material points linked by nearest-neighbour interactions and an energy of the form

Eo(u) = ey (=), | (1)

i €

where ¢ is the distance between neighbouring points in the reference configuration,
u; denotes the position of the i-th material point (i = 1,...,L/¢) in the deformed
configuration and 1), is a Lennard Jones type potential characterized by being convex
until a threshold 7, and then concave. In both cases, though with some technical
differences, the authors highlight that the effect of the convex part is to give rise to a
bulk (elastic) energy, while the concave part contributes to a penalization of fracture.
Minimizers, local minimizers and stationary points under suitable boundary condi-
tions and body forces are characterized as having only a finite number of interactions
lying in the concave region of . which give rise to fracture in the limit description,
while all the other interactions contribute to the bulk. The limit continuum energy
can be explicitly described by using the terminology of I'-convergence (which is a
variational convergence that ensures the convergence of minimum problems, see [11]
or [8]), and the theory of free-discontinuity functionals, of the form

fa)di+ 3> g([ul), (2)

teS(u)

Elu) = /(O,L)\S (u)

defined on piecewise-Sobolev functions on the segment (0, L) (S(u) denotes the set of
discontinuities of v and [u] stands for the jump of ), and can be carried to dimension
higher than one by using the framework of special functions of bounded variation (see
[4]). In the case treated in [7] the limit energy densities f and g are defined as the
limit of the convex part of 1. and of a suitable scaling of its concave part, respective-
ly. If the convex/concave structure of . is missing a more delicate analysis must be
performed (see [10]) This approach can be pushed further to deal with scalar-valued
functionals of the same form, defined on higher-dimensional lattices. The fundamen-
tal technique is a ‘slicing approach’ which allows to reduce to 1-dimensional sections,
and hence to the theory outlined above. Long-range interactions (both in a one di-
mensional and in a multi-dimensional setting) can be analyzed using a superposition
procedure in some situations, when the effect of the interactions decay sufficiently
fast with respect to the distance in the reference lattice (see [9]). If this fast-decay
assumption fails then the limit may contain also a non-local term, and the surface
energy is affected by a boundary-layer effect (see [6]). The methods illustrated above
must be integrated by additional arguments in the case of vector-valued functions.
Even in the simplest case of functionals related to Griffith’s theory of brittle fracture,
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non-central interactions must be added, with non-trivial technical problems due to
the non-applicability of a ‘slicing approach’ (see [4]).
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Mechanisms of Fracture in Industrial alloys
Yves Bréchet
INPG Grenoble

Industrial alloys present a wide variety of fracture mechanisms, depending on the
microstruture and on the mode of loading. Recent development in micromechanics
allow to model in certain cases both the fracture characteristics and the anisotropy of
these characteristics depending on the microstrutural features such as coarse precipi-
tates, texture, or grain size. The present seminar aims at illustrating by a number of
examples these approaches linking mechanics and metallurgy: Fracture of aeronau-
tical Aluminium alloys in tensile loading and coupling with anisotropy Fracture of
aeronautical Aluminium alloys in fatigue loading Fracture of duplex stainless steels
The seminar will outline in fine some open problems in materials science for which
coupling between physical metallurgy of fracture and micromechanics approach are
badly needed, in particular as far as the defects occurring from the processing stage
are concerned .




Personal encounters with the phenomenon of dynamic crack
propagation
K B Broberg
Dublin

My interest in dynamic crack propagation dates back to the mid 1950’s when I studied
scabbing of solids under explosive attack. Several very accurate experimental results
on dynamic crack propagation existed at that time, notably those associated with the
German school (e.g. Schardin 1950). They indicated a material dependent terminal
crack velocity, surface roughness increasing with the crack velocity, and branching at
high velocities. It was puzzling that a)the terminal velocity was considerably lower
than the Rayleigh wave velocity, b) the surface roughness increased rather than de-
creased (in the light of experiences of embrittlement at high loading velocities), and
¢) branching could occur without appreciable loss of crack edge velocity. Contrary to
experimental results, a solution for an expanding crack (Broberg 1960) indicated the
Rayleigh wave velocity as terminal. So did a determination of the energy flux into
the crack edge (Broberg 1964), but I assumed that the local, considerably reduced,
Rayleigh wave velocity in the highly strained region at the crack edge set the limit,
a hypothesis which, however, proved to be erroneous (Broberg 1973). At the Lehigh
symposium 1972, a paper was presented showing an astonishingly steep rise of the
energy dissipation at high crack velocities in PMMA (Paxson and Lucas 1973). This
gave a clue to answering questions a) and c¢). As for the implications on branching,
Parletun (1979) showed that branching is postponed far beyond the point when it
is energetically possible and that branching may indeed occur without noticeable re-
duction of the crack velocity. Questions a) and b) seemed to be answered by the cell
model (Broberg 1979), but it implied the loss of a material length parameter, which
made it impossible to maintain a unique relation between energy flux and velocity.
However, this appeared to be a reality, as confirmed experimentally by Ravi-Chandar
(1982). Johnson (1992) used the cell model for numerical simulations, which could
reproduce most of the experimental results, including branching. Later, I got inter-
ested in mode II cracks, which may run at intersonic velocities. This has recently
been confirmed by experiments (Rosakis et al.1999).
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Elastic structures modelled by measures and applications to
shape optimization
Giuseppe Buttazzo
Dipartimento di Matematica
Via Buonarroti, 2
56127 PISA (Italy) Email: buttazzo@dm.unipi.it

The point of view we adopted is that an (hyper)elastic structure is identified once its
stored energy functional is given. For instance, if §2 is a regular domain, the energy

Bw)= [ (%(divu)2+,u|e(u)|2) i

identifies, in the framework of linear elasticity, the elastic homogeneous isotropic body
2. The limit of this approach appears when one has to deal with complex structures,
where pieces of different dimensions may be joined together, and in problems of shape
optimization, where the structure is not prescribed but represents the unknown of the
problem. In particular, in many cases of this latter type, it is known that a classical
solution does not exist and the optimal structure has a meaning only in a suitable
“relaxed” sense. The approach we present consists in identifying an elastic structure
to a nonnegative measure u; the stored energy functional then takes the form

B(w) = [ (Sive)? + (@) da

and admissible displacements u then belong to a Sobolev space Hﬁ which can be
suitably defined. In this way structures of any kind of complexity can be treated, and
several shape optimization problems admit an optimal (measure) solution.
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Stability analysis of fracture propagation in cohesive zone
models: a summary with emphasis on difficulties

E. Ching
Hong Kong

In this talk, I shall give a summary of our investigation of the dynamic stability of
fracture propagation in cohesive-zone models and especially emphasize on how these
models might be mathematically ill-posed for stabilty analysis. In our approach,
we analyse the linear stability by evaluating the first-order response of the crack to a
small spatially oscillating stress. I shall first illustrate our method using a simple one-
dimensional model [Ching, Langer, and Nakanishi, Phys. Rev. E 52, 4414 (1995)).
In one dimension, the linear response is a small oscillation in the velocity of the crack
tip. For this simple model, the linear response coefficient can be computed explicitly,
and all its poles are found to be stable exponentially decaying modes, as expected.
However when this analysis is applied to mode-I fracture in a two-dimensional model
[Ching, Langer, Nakanishi, Phys. Rev. E 53, 2864 (1996)], it turns out there is no
unique solution [Langer and Lobkovsky, J. Mech. Phys. Solids 46, 1521 (1998)).
I finally present calucations for mode-III fracture in a two-dimensional model with
friction. We shall see that a mathematical inconsistency is explicitly found in the
stability analysis despite that the model gives steady-state results that are physically
sound.




Applications of invariant integrals

R. V. Craster
Imperial College, London SW7 2BZ

This talk will describe applications of invariant integrals based upon ideas due to
Atkinson (1975), Eshelby (1970), Nilsson (1973), Rice (1968), and others to fracture
problems in poroelastic, thermoelastic or non-homogeneous or layered dynamic elastic
materials. An iterative approach to solving some crack problems based upon general-
ized ray theory will also be discussed, together with an application of weight functions.

References

C. Atkinson, Some results on crack propagation in media with spatially varying elastic
moduli, Int. J. Fracture, 21, 619-628, 1975 J. D. Eshelby, Energy relations and the
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A variational formulation of softening phenomena in fracture
mechanics
Gianni Dal Maso
SISSA, Trieste, Italy

Discrete models of particles subject to nearest-neighbour non-linear interactions are
used to approximate continua allowing for softening and fracture. The qualitative
properties of all continuous one-dimensional variational models obtained in this way
are examined. A detailed study is carried out of local minima and stationary points
for the continuous models. Scale effects are discussed. These results are proved in
the reference given below.

Reference
Braides A., Dal Maso G., Garroni A.: Variational formulation of softening phenomena

in fracture mechanics: the one-dimensional case. Arch. Rational Mech. Anal. 146
(1999), 23-58.
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Analytical Mechanics—Based Modeling of Dynamic
Fragmentation in Brittle Materials
W. J. Drugan
Department of Engineering Physics
1500 Engineering Drive
University of Wisconsin—Madison
Madison, WI 53706

The dynamic fragmentation of brittle materials is an extremely complex process in-
volving the nucleation and propagation of myriad microcracks that finally coalesce,
breaking the solid into fragments. To date, the most widely applied theoretical models
of the process involve some type of relatively simple global energy balance argument
to predict fragment sizes and velocities. Very recently, computational modeling of
the phenomenon has been carried out by large finite element calculations based on
the incorporation of cohesive surfaces between standard elastic elements, to serve as
prospective fracture paths in a dynamic simulation. In the present study we propose
and analyze a simple analytical mechanics-based model of dynamic fragmentation
which, rather than employing a global energy balance, adopts a cohesive surface for-
mulation and analyzes the time-varying dynamic deformation of a prospective brittle
fragment. This leads to predictions of time to initiate fragmentation and minimum
fragment size, as a function of material properties and the applied strain rate. These
predictions are compared with the energy-based models of Grady (1982) and Glenn
and Chudnovsky (1986), and with the recent numerical finite element simulations of
Miller, Freund and Needleman (1999). In an interesting confirmation of all the mod-
els, our predictions and those of the two energy-based models converge at extremely
high strain rates, the regime in which one would expect the energy models to be valid.
However, our new model implies that the energy-based models’ regime of validity is
restricted to surprisingly (and perhaps unphysically) high strain rates.

References
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The plastic dynamics of brittle vs ductile fracture in
amorphous solids
Michael L. Falk
Division of Engineering and Applied Sciences
Harvard University

The microscopic processes that underlie plasticity in crystalline solids are relatively
well understood in terms of dislocations. Nonetheless, making a connection between
these dislocation dynamics and theories of macroscopic plasticity in order to under-
stand phenomena such as the brittle/ductile transition in fracture remains elusive.
Meanwhile, the micromechanics that give rise to a nearly identical range of phe-
nomena in noncrystalline materials are relatively poorly understood. This route to
understanding plasticity may prove simpler and could shed light on phenomena in
both types of solids. Molecular dynamics investigations of fracture in model DONCrys-
talline systems reveal that the relative ductility, ie fracture toughness, is sensitive to
the particulars of the interatomic potential. Similar investigations of the inelastic
shear response of this model system reveal analogous time and history dependent
behavior to that seen in actual materials. Examination of the rearrangements under-
lying these phenomena leads to the conclusion that the basic unit of inelastic shear
can be understood as a microscopic two-state system. A theory of the dynamics of
inelastic deformation under shear is developed from this assumption and compared
to the simulation results. The implications for fracture are discussed.

References
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Revisiting brittle fracture from an energy minimization
‘ standpoint
Gilles Francfort
LPM.TM,
Université Paris-Nord, 93430 Villetaneuse, France [Email
francfor@lpmtm.univ-paris13.fr]

I will report on the result of a collaborative effort with B. BOURDIN (Danmarks
Tekniske Universitet, Lyngby), A. CHAMBOLLE (Université Paris-Dauphine, Paris),
I. FonsSECA (Carnegie Mellon University, Pittsburgh) and J.J. MARIGO (Université
Paris-Nord, Paris). In the first part of the talk, I will briefly recall the basic princi-
ples of classical quasistatic brittle fracture and evoke the difficulties that the theory
encounters when attempting to predict the initiation, path or growth of a crack. I
will then propose a "slight” deviation of the model which alleviates the abovemen-
tioned difficulties at the expense of a postulate of strong stability of the equilibrium
configurations throughout the (quasistatic) evolution. A second part of the talk will
be devoted to the mathematical treatment of the proposed model; this will be rather
brief because I expect that it will be covered in more details in other talks, most
likely those of G. DAL MASO or A. BRAIDES. In the third part of the talk I will
demonstrate how the resulting formulation is amenable to efficient numerical algo-
rithms that rely on variational approximation techniques. I will finally present three
numerical crack evolutions in settings that are, to my knowledge, beyond the predic-
tive range of the classical methods. Background material for the talk may be found
in the following articles and references therein.
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Multiple Neck Formation in a Ductile Material at High
Strain Rate
L. B. Freund
Brown University

When a ductile metal cylinder is expanded at a slow rate, say by internal pressure,
it deforms more or less uniformly into the plastic range until a strain localization,
or “neck”, develops at some point on the circumference; ductile fracture follows al-
most immediately at this site. In contrast, if the same plastic deformation is induced
at a high rate of loading, experiments reveal that many necks form around the cir-
cumference of the cylinder at more or less equally spaced sites. The onset of this
phenomenon and its sensitivity to material parameters are discussed on the basis of
numerical simulations of the deformation process and a dynamic bifurcation analysis.
It is shown that formation of multiple necks which grow at rates large compared to
the rate of background deformation occurs naturally in the process. Material strain
rate sensitivity, which is important in describing the growth of necks into ductile
fractures, does not seem to play a significant role in their formation.
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Sensitivity of cracks in 2D-elastic solids

Victor A. Kovtunenko
Lavrentyev Institute of Hydrodynamics, 630090 Novosibirsk, Russia;
Stuttgart University, Mathematical Institute A, 70511 Germany
E-mail: kovtunenko@hydro.nsc.ru

Research of crack problems has the principal difficulty due to the non-regular bound-
ary, which leads to the loss of the whole solution smoothness. The main subject of our
interest concerns the shape sensitivity analysis in these problems. This means that
we investigate variations of its solution, energy functional, or stress intensity factors,
to perturbations of a crack. The reason is that the crack propagation depends on the
derivatives of energy functional by the Griffith criterion, or on the stress intensity
factors by the Irwin criterion. The admissible variations with respect to the crack
perturbations are shown with stress on the mathematical difficulties.

We consider the static model of classical linear elasticity for a two-dimensional solid
with a crack. First, there are assumed different types of boundary conditions imposed
on the crack faces, such as the Neumann, Signorini and friction conditions. Second,
the crack length and shape are both under the perturbation for the rectilinear and
curvilinear crack forms.

We can obtain full expansion in the linear models with stress-free boundary condi-
tions at a crack. This allows us to formulate a condition of the locally optimal crack
from the variational principles. In nonlinear crack problems restricted by unilateral
constraints imposed at a crack, we have only the first-order variations and can for-
mulate a condition of the crack stationarity or growth by the Griffith criterion.
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Crack kinking from an initially closed crack — cases of an
ordinary crack and an interface one, with and without
friction
J-B Leblond, Paris

Crack kinking in elastic solids in plane strain situations is studied in the case where
the crack is initially closed but kinking opens it. One considers first the case of an
ordinary (not interface) crack. The first problem which arises is to determine the
form of the asymptotic stress field near the crack tip prior to kinking. It has been
solved notably by Deng, who showed that because of contact between the crack lips,
the classical singular mode I field is replaced by another, bounded one involving a
new non-singular stress. In the absence of friction, this non-singular stress just rep-
resents a uniform compression perpendicular to the crack. If friction is present, it
also involves some uniform shear stress. From there, and using an argument of posi-
tive homogeneity of degree 1 of the type of problems considered plus some change of
scale, one derives universal formulae for the first two terms of the expansion of the
stress intensity factors at the tip of the open, extended crack in powers of the crack
extension length. It is remarkable that even in the presence of friction, no ”history
effects” appear in these formulae in spite of the fact that the problem is then basi-
cally of incremental character. The various universal functions of the kink angle and
the friction coefficient involved in these formulae are identified through finite element
computations (in elasticity with unilateral contact, with or without friction). From
there, and using Goldstein and Salganik’s ”principle of local symmetry”, one can de-
termine the kink angle, which is found to always precisely amount to 77.3 degrees,
irrespective of the friction coefficient. This result is confirmed by recent experiments
of Pinna which have evidenced a kink angle of the order of 70 degrees. In contrast,
the initial curvature parameter of the crack extension is found to depend upon both
non-singular stresses of the initial crack. The problem of whether or not, after the
initial kink, the crack tends to come back to its original direction is finally investi-
gated, and it is found that this depends upon the respective values of the two initial
non-singular stresses. One considers then the case of an interface crack, which is in
fact always asymptotically closed, whatever the loading applied. The question of the
form of the asymptotic stress field near the crack tip has again been solved by some
previous author, namely Comninou (with or without friction). Again, in the singular,
dominant term, the mode I” contribution disappears so that this term only depends
upon a single stress intensity factor, of mode II”. Attention is paid here only to the
first term of the expansion of the stress intensity factors at the extended crack tip in
powers of the crack extension length, i.e. to the value of these stress intensity factors
just after the kink. Using the same type of arguments as for an ordinary crack, one
derives the expression of these stress intensity factors. Again, no ”history effects”
appear in this expression. The values of the universal functions of the kink angle, the
friction coefficient and the mismatch of elastic properties between the materials which
appear here are again determined by finite element computations. Also, application
of the principle of local symmetry yields the value of the kink angle as before. This
angle depends upon both the mismatch of elastic properties and the friction coeffi-
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cient, but only weakly upon the first argument.
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Elastic theory of dynamic cracks, with an emphasis on the
fracture of thin plates

Fernando Lund
Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas
Universidad de Chile, Casilla 487-3, Santiago, Chile

Recent experiments on the fracture of thin samples of glass and plexiglass have re-
vealed unstable crack dynamic behaviour. These experiments have taken a close
quantitative look at the crack-tip velocity fluctuations, ultrasound emissions, and
surface heterogneities associated with long standing puzzles in the tensile cracking
of very brittle materials. When the motion of an elastic singularity deviates from a
straight line, energy balance considerations are insufficient to determine the singular-
ity’s motion since they provide only one equation to determine the dynamics of two,
or three, degrees of freedom, depending on the dimensionality of the system. Thus, in
addition, the equations of (linear) momentum balance must be considered. In so do-
ing, there results a new elastic force that does no work and that consequently cannot
be obtained on the basis of energy considerations alone. The way to go about showing
the existence of this no-work-performing force is to write the equations of dynamic
elasticity in energy-momentum conservation form and to integrate them out within a
volume that excludes any singularities, in a manner that is standard for quasi-static
processes. In order to understand how this force affects crack dynamics, it is conve-
nient to think of the crack tip as a superposition of many infinitesimal dislocations.
For a single dislocation, it is possible to establish the exact form of this force: it is per-
pendicular to the direction of motion, it depends linearly on the dislocation’s velocity
so that it vanishes when the dislocation is at rest, and it is present only for dynamic
loading. These facts suggest a possible scenario to understand the dynamic instability
of fast cracks in thin brittle materials in terms of a resonant interaction between crack
tip and Rayleigh-Lamb modes, and has motivated a detailed study of said interaction.
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A perturbation model for a three-dimensional crack on an
interface
A. B. Movchan
University of Liverpool

This talk includes the study of the weight functions for three-dimensional interfacial
cracks and the perturbation analysis associated with a small deviation of the crack
front; the unperturbed crack occupies a half-plane on the interface between two half-
spaces. We begin with the scalar problem and consider both static and dynamic
cases. Then, for the static problem of linear elasticity we discuss the structure of
the weight functions and asymptotics for the stress-intensity factors for an interfacial
crack with a wavy front. Here, we use the integral equation analysis developed in [1];
the symmetric weight functions for a 3D static interfacial crack have been constructed
in [2]; the asymptotic algorithm related to small perturbations of the crack front is
based on the results of [3-6]. [1] J.R. Willis, Fracture mechanics of interfacial cracks.
J. Mech. Phys. Solids 19 (1971), 353-368.

[2] Y.A. Antipov, An exact solution of the 3-D problem of an interface semi-infinite
plane crack, J. Mech. Phys. Solids 47 (1999), 1051-1093.

[3] J.R. Willis and A.B. Movchan, Dynamic weight functions for a moving crack. L
Mode I loading. J. Mech. Phys. Solids 43 (1995), 319-341.

[4] A.B. Movchan and J.R. Willis, Dynamic weight functions for a moving crack. IL
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[5] J.R. Willis and A.B. Movchan, Three-dimensional dynamic perturbation of a prop-
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Dynamical Fracture in Continuum Models

Hiizu Nakanishi
Department of Physics, Kyushu University 33, Fukuoka 812-8581, Japan

A mathematical technique to solve a simple continuum model of fracture dynamics is
reviewed. The model is defined as a dynamical one in the sense that the dynamical
features of the fracture propagation can be calculated from a given external physical
condition. I will first present the simplest possible case to illustrate the technique,
and then extend it to the case with the cohesive zone, which suppresses the stress
divergence, and the case with the surface dissipation. It will be shown that a pulse
solution with a self-healing fracture can be also obtained. Finally, it is pointed out
that the straight crack propagation in an isotropic medium is not stable, which will
be discussed by E. Ching in detail.

References

1. J.S. Langer and H. Nakanishi, Phys. Rev. E 48 (1993) 439.

2. H. Nakanishi, Phys. Rev. E 49 (1994) 5412.

3. E.5.C. Ching, Phys. Rev. E 49 (1994) 3382.

4. E.S.C. Ching, J.S. Langer, and H. Nakanishi, Phys. Rev. Lett. 76 (1996) 1087.
5. E.5.C. Ching, J.S. Langer, and H. Nakanishi, Phys. Rev. E 53 (1996) 2864.
6. H. Nakanishi, Phys. Rev. E 54 (1996) R4564.

21




Slip dynamics at a dissimilar material interface
K. Ranjith and J.R. Rice
Division of Engineering and Applied Sciences and
Department of Farth and Planetary Sciences
Harvard University, Cambridge, Massachusetts, USA

It has been shown recently [Renardy (1992), Adams (1995), Simdes and Martin-
s (1998)] that steady frictional sliding along an interface between dissimilar elastic
solids with Coulomb friction acting at the interface is ill-posed for a wide range of
material parameters and friction coefficients. The ill-posedness is manifest in the
unstable growth of interfacial disturbances of all wavelengths, with growth rate in-
versely proportional to the wavelength. We first establish the connection between the
ill-posedness and the existence of a certain interfacial wave in frictionless contact, the
generalized Rayleigh wave of Weertman (1963) and Achenbach and Epstein (1967).
Precisely, it is shown that for material combinations where the generalized Rayleigh
wave exists, steady sliding with Coulomb friction is ill-posed for arbitrarily small val-
ues of friction. Secondly, regularization of the problem by a friction law motivated
by the experiments of Prakash and Clifton (1993) is studied. We show that a friction
law with no instantaneous dependence on normal stress but a simple fading memory
of prior history of normal stress makes the problem well-posed.
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Problems in crack and fault dynamics!
James R. Rice
Division of Engineering and Applied Sciences
and Department of Earth and Planetary Sciences,
Harvard University, Cambridge, MA 02138, USA?

Recent observations on the dynamics of crack and fault rupture are described, togeth-
er with related theory and simulations in the framework of continuum elastodynamics.
Topics include configurational instabilities of tensile crack fronts (crack front waves,
disordering, side-branching), the connection between frictional slip laws and modes
of rupture propagation in earth faulting, especially conditions for formation of self-
healing slip pulses, and the rich faulting and cracking phenomena which result along
dissimilar material interfaces due to coupling between slippage and normal stress al-
teration. Studies of the unsteady dynamic propagation of tensile cracks in 3D solids
have led to discovery of a new type of elastic wave which propagates laterally along
the front of a growing crack. The result has implications for the disordering of ini-
tially smooth fracture propagation by small heterogeneities in fracture energy. [1-5]
Observations suggest that a side-branching instability of crack path is responsible
for the limiting speed of tensile ruptures. Attempts to explain that theoretically are
reviewed. [6-11] For the dynamic propagation of slip rupture along earthquake faults,
frictional interaction between the sliding surfaces is critical to determining the char-
acter of the process. Progress has been made on laboratory-motivated constitutive
descriptions of sliding which are rich enough to predict when slip is stable or un-
stable. In addition, there is new understanding of dynamical interactions between
friction and rupture propagation which explains when ruptures occur in the form of
a classical enlarging shear crack, or in the form of a self-healing pulse in which slip
arrests shortly after passage of the rupture front. Slip inversions for large earthquakes
favor the latter mode. [12-14] Extremely rich behavior occurs for dynamic problems
of slip and cracking along dissimilar material interfaces, in which case there is strong
coupling between slippage and normal stress alteration. During cracking, zones of
contact and frictional sliding have been observed at the crack tip and are predicted
in elastodynamic simulations. The problem of steady sliding under classical Coulomb
friction is unstable and actually ill-posed; regularizations have been devised based on
experimentally motivated modifications of the friction law for situations of rapidly
varying normal stress, and these lead to self-healing pulses of slip propagation. [15-21]
Cracking along dissimilar material interfaces is similarly complex, with the opening
part of the fracture preceded by a zone of sliding contact at the rupture tip, and with
intersonic rupture propagation speeds. Such features, seen in experiments, are also
reproduced in theoretical calculations [22-24].
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Mode of rupture propagation on faults: Expanding cracks
versus self-healing slip pulses!
James R. Rice
Division of Engineering and Applied Sciences
and Department of Earth and Planetary Sciences,
Harvard University, Cambridge, MA 02138, USA?

Frictional interaction between sliding fault surfaces is important to determining the
character of the earthquake process. Depending on the form of that interaction, rup-
ture could be expected to occur in the form of a classical enlarging shear crack, or
in the form of a self-healing pulse in which slip arrests shortly after passage of the
rupture front. Seismic inversions for large earthquakes suggest that nature prefers
the self-healing mode [1], and that has induced vigorous research on the way that
such a mode could develop. The issue is important not only for the character of
strong ground motions, but also because features controlling the mode of rupture
are thought to be an important to understanding the spatio-temporal complexities of
earthquake sequences and the low overall driving stress at which some major faults
are inferred to operate. It has been shown that the self-healing mode can be generated
on velocity-weakening faults, described within the rate- and state-dependent friction
formulation, when the constitutive law allows for restrengthening in the absence of
continuing slip [2]. Further, it has recently been shown that the self-healing mode is
favored, relative to the expanding crack mode, on faults which are subject to rela-
tively low applied shear stress (outside of some localized high-stress, or low-strength,
zone where the rupture nucleates) [4]. Specifically, a critical level of applied stress
(outside the nucleation zone) has been identified below which no indefinitely expand-
ing rupture of the crack-like mode can exist. Simulations support the conclusion
that all ruptures propagating below that stress level are of the self-healing type, and
further provide guidelines, based on a dimensionless measure of velocity weakening
at typical dynamic slip rates, for when rupture at higher stress levels will be in the
self-healing or the crack-like mode. The crack-like mode occurs when the measure
is small. Self-healing pulses have also been shown to occur under broad conditions
when elastically dissimilar materials slide [5], a possibility suggested long ago [6]. In-
deed, it has recently been learned (see abstact by K. Ranjith and J. R. Rice) that the
sliding of elastically dissimilar materials, even under a constant coefficient of friction,
is dynamically unstable to small perturbations (and generally ill posed) under a re-
markably wide parameter range, including realistic values of the friction coefficient.
Some steady traveling pulse solutions have been identified {7] in which rupture prop-
agates along an interface of only slightly dissimilar materials (e.g., shear wave speeds
differ by less than 30 to 40%); the pulse travels at a generalized Rayleigh wave speed,
and rupture occurs not by the concentration of shear stress at the rupture front, but
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rather by the reduction of normal compressive stress to whatever level suffices to
allow slip under the remotely applied shear stress. Further, the self-healing rupture
mode can be generated by wave effects in rupture along faults of highly heterogeneous
strength and fracture properties, effectively containing local barriers to rupture [8-10].
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Experiments on dynamic fracture in brittle amorphous
materials: on the validity of the LEFM theory of dynamic
fracture and the existence of crack front waves
Eran Sharon and Jay Fineberg
The Racah Institute of Physics The Hebrew University of Jerusalem
Givat Ram, Jerusalem, Israel

We report on the results of experiments on Mode 1 fracture in brittle amorphous ma-
terials (PMMA and soda lime glass). We focus on the dynamic stages of the fracture
process with an aim to verify the predictions of linear elasticity fracture mechanics
(LEFM). We show that up to a velocity v, = 0.4Vg (where Vg is the Rayleigh wave
speed) a single crack exists and propagates according to the equation of motion of a
single straight crack given by LEFM [1]. Beyond that velocity the crack becomes un-
stable, a repetitive process of micro branching accompanied by increasing oscillations
in the crack velocity occurs [2]. At this stage the equation of motion is no longer a
valid description of the mean velocity of the crack as the single crack condition that
leads to the equation is violated. The validity of the theory is further demonstrated
beyond v, by concentrating solely on instantaneous ”single crack” states that can
occur between successive branching events. At those instants, which correspond to
the highest peaks in the crack velocity measurements, all of the energy flux released
by the fracture process flows into a single crack. As the theory predicts that a crack
has no inertia, it can attain immediately its equilibrium velocity. The measurements
show, that indeed, the highest peaks in the crack velocity coincide with the theoret-
ical single crack velocity curve at all velocities up to 0.9Vg [3]. Another prediction
of LEFM for the case of a Mode 1 crack propagating in a three-dimensional body,
concerns the stability of the crack front to perturbations. Recent analytical calcula-
tions [4] and computer simulations [5] found that a perturbation of a straight crack
front in a homogeneous material, develops into two counter- propagating front waves
which propagate along the running crack front. The predicted velocity of the waves
is 0.94Vx with respect to their source. Their decay rate depends on the derivative of
the fracture energy of the material with respect to the crack velocity. For a material
with a constant fracture energy the decay rate is predicted to be zero. In experiments
in soda lime glass we observe these front waves and confirm some of the above the-
oretical predictions. A propagation velocity of Vg + 5% was measured over a wide
range of mean crack velocities. The decay rate of the waves in glass (which has a
nearly constant fracture energy) is extremely low, whereas it is much higher in PM-
MA (where the fracture energy increases with velocity). In addition, we observe a
linear superposition between interacting front waves and measure their (very high)
reflection coefficient from the plates surface. It is shown that in the case of glass, the
micro-branches that appear beyond v, act as the main source of the front waves.
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On the existence and location of singularities arising in
variational problems of nonlinear elasticity
J Sivaloganathan
University of Bath

In this talk we consider the variational problem of determining the minimum energy
configuration of a nonlinear elastic body under prescribed boundary displacements.
Work in [1] shows that minimisers may develop point discontinuities corresponding
to cavities forming in the deformed body (see also [2] and the significant extension in
[3]). We present an isoperimetric inequality for (discontinuous) deformations which
yields bounds on the boundary data for which discontinuous minimisers exist (see [4]).
Using an invertibility condition introduced in [3] we show the existence of minimisers
with potential discontinuities at any finite set of prescribed points (see [5]). Finally,
we describe an approach which predicts the energetically optimum location at which
a singularity will initiate (see [6]). This is joint work with S.J. Spector (Southern
Illinois) and in part with S. Muller (Max-Planck Institute, Leipzig).
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Phenomena in fracture revealed by lattice models

Leonid Slepyan
Department of Solid Mechanics, Materials and Structures, Tel Aviv University

Square- and triangular-cell lattices, consisting of point particles connected by mass-
less elastic or viscoelastic bonds, are considered. These models of a structured materi-
al allow the following main phenomena in crack propagation to be revealed: Structure-
and crack-speed-dependent radiation of high-frequency waves excited by the propagat-
ing crack front. (It was first found by Slepyan, 1981a; a survey of the main following
works in this topic was represented in Slepyan, 1998.) The radiation intensity does not
disappear in zero crack speed limit, has a global minimum, roughly, at a half critical
speed and tends to infinity when the speed approaches the critical value. It creates
wave resistance to the crack propagation as a positive difference between the global
(macro-level) and local (micro-level) energy release rate. (The global rate is given by a
long-wave/low-frequency asymptotic approximation of the lattice solution.) Also, the
radiation can lead to damage of the crack surfaces (Marder and Gross, 1995) thus in-
creasing the resistance. Supersonic crack propagation is not forbidden in the lattices.
In this case, the far-field energy flux does not exist, and the crack takes energy from
neighboring initially stressed layers or from a high-frequency wave with an energy
flux toward the crack (Slepyan, 1981b). Structure-associated dynamic amplification
factor appears to be a governing phenomenon in crack propagation (Slepyan, 1999).
In a viscoelastic lattice, crack can grow slowly (Slepyan et al., 1999) if the relaxation
and creep times belong to a static-amplitude-response domain, where the dynamic
factor does not manifest itself, and vice versa. In particular, the crack cannot grow
slowly in an elastic lattice (Slepyan, 1981a; Marder and Gross, 1995). Instability of
straight-line fast crack propagation is shown (Marder and Gross, 1995). Size effect in
fracture is revealed by the viscoelastic lattice model (Slepyan et al., 1999; Slepyan,
1999).
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Bi-modal surface energy and microcracking
L Truskinovsky
University of Minnesota

In classical fracture mechanics, equilibrium configurations are obtained by minimizing
an energy functional containing two contributions, bulk and surface. Usually the bulk
energy is convex and the surface energy is concave. While this type of minimization
successfully describes macroscopic cracks, it has so far failed to model micro-defects
forming a so-called process zone. In this paper we suggest a new model of brittle
micro-damage with a non-concave, ”bi-modal” surface energy, which allows the for-
mation of both macro and micro cracks. The corresponding force-opening relation
1s characterized now by two peaks: the one near the origin and another one away
from the origin. The important mathematical consequence of this assumption is that
the surface energy is no longer subadditive which prevents the localization of frac-
ture. Specifically, we consider the simplest one-dimensional problem for a bar in a
hard device and show that as the total elongation increases, the model predicts the
‘quantized” formation of a finite number of micro-cracks, one after another, until an
ultimate macro-crack forms. The resulting total energy turns out to be a non-smooth
function of average strain: it can be represented by a finite number of convex curves,
each corresponding to a configuration with a fixed number of cracks. The overall
stress-strain relation is then discontinuous and has a characteristic sawtooth struc-
ture. When the concave segment of the surface energy near the origin shrinks to
zero the model recovers distributed damage, while when the convex region shrinks, a
localized fracture appears as another limiting case. (Joint work with G. Del Piero).
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Dynamic perturbation of a crack propagating in a
viscoelastic medium
J.R. Willis
DAMTP, Silver Street, Cambridge CB3 9EW, UK

The problem is to find the stress intensity factors when a crack occupying the region
—o0 <3 < Vi, —00<xy <00, T3 =0

is subjected to general dynamic loading. The medium through which the crack propa-
gates is viscoelastic (an elastic medium being included as a special case). The intensity
factors are expressed as integrals over the crack surfaces of the applied loads, multi-
plied by kernel functions which are called weight functions. Equations which define
the weight functions are set up. They yield Wiener-Hopf problems: a scalar problem
for tensile loading, and a 2 x 2 matrix problem for shear loading. Surprisingly, both
can be solved. The weight functions find use in calculating the perturbations to the
stress intensity factors induced when the crack deviates slightly from being flat and
straight-edged, and provide a tool for a stability analysis of the original crack, and
for study of the development of “crack front disorder”. The viscoelastic solution has
not yet been published, but it builds upon ich is summarised in the references.
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